Legenda
Электроника для дома

Что стоит за цифровыми счетчиками электроэнергии

Ещё несколько лет назад контроль потребления и сбережение электроэнергии не были столь актуальны. Всех вполне устраивали цены на электроэнергию и соответствующая система её учёта на базе электромеханических (индукционных) счётчиков. Принцип их работы основан на подсчёте количества оборотов диска, вращающегося в бегущем магнитном поле. Частота вращения пропорциональна мощности, а количество оборотов — потребляемой электроэнергии. Такие счётчики просты, надёжны и дёшевы.

    При переходе России на рыночные отношения, у поставщиков электроэнергии возникла проблема контроля и управления её потреблением. В свою очередь, потребитель заинтересован в том, чтобы не переплачивать. В результате, стало необходимо увеличение сервисных функций счётчиков. Поставщикам необходим оперативный доступ ко всей информации о количестве проданной электроэнергии на данный момент и дистанционный контроль. Потребитель заинтересован в экономии электроэнергии за счёт использования различных тарифов (дневной, ночной и так далее) и в удобном способе оплаты. Альтернатива этому — применение электронных платежей, вплоть до установления картридеров непосредственно в сами счётчики для оплаты.

    Современные механические счётчики не могут справиться с поставленными задачами, при условии оптимального соотношения цена/качество. Поэтому необходим новый подход к системам учёта электроэнергии и проведения платежей.

    В настоящее время, при стремительном развитии микроэлектроники и снижении цен на электронные компоненты, цифровые системы управления постепенно вытесняют своих аналоговых конкурентов. Это, в первую очередь обусловлено большим разнообразием микроконтроллеров и резким снижением их стоимости. Одно из главных преимуществ цифровых систем управления на базе микроконтроллеров — это гибкость и многофункциональность, достигаемые не аппаратно, а программно, не требуя дополнительных материальных затрат. Переход на микроконтроллерное управление счётчиков электрической энергии имеет ряд преимуществ, в первую очередь, повышение точности и надёжности, а так же многофункциональность, достигаемая за счёт малых аппаратных затрат.

    В зависимости от требований, современные цифровые счётчики должны в любой момент времени оперативно передавать требуемые данные по различным каналам связи на диспетчерские пункты энергоснабжающих предприятий для оперативного контроля и экономических расчётов потребления электроэнергии.

    Для расчёта электрической энергии, потребляемой за определённый период времени, необходимо интегрировать во времени мгновенные значения активной мощности. Для синусоидального сигнала мощность равна произведению напряжения на ток в сети в данный момент времени. На этом принципе работает любой счётчик электрической энергии. На рис. 1 показана блок-схема электромеханического счётчика.

Блок-схема электромеханического счетчика электрической энергии

Рис. 1. Блок-схема электромеханического счетчика электрической энергии

    Реализация цифрового счётчика электрической энергии (рис. 2) требует специализированных ИС, способных производить перемножение сигналов и предоставлять полученную величину в удобной для микроконтроллера форме. Например, преобразователь активной мощности — в частоту следования импульсов. Общее количество пришедших импульсов, подсчитываемое микроконтроллером, прямо пропорционально потребляемой электроэнергии.

Блок-схема цифрового счетчика электрической энергии

Рис. 2. Блок-схема цифрового счетчика электрической энергии

    Не менее важную роль играют всевозможные сервисные функции, такие как дистанционный доступ к счётчику, к информации о накопленной энергии и многие другие. Наличие цифрового дисплея, управляемого от микроконтроллера, позволяет программно устанавливать различные режимы вывода информации, например, выводить на дисплей информацию о потреблённой энергии за каждый месяц, по различным тарифам и так далее.

    Для выполнения некоторых нестандартных функций, например, согласования уровней, используются дополнительные ИС. Сейчас начали выпускать специализированные ИС — преобразователи мощности в частоту — и специализированные микроконтроллеры, содержащие подобные преобразователи на кристалле. Но, зачастую, они слишком дороги для использования в коммунально-бытовых индукционных счётчиках. Поэтому многие мировые производители микроконтроллеров разрабатывают специализированные микросхемы, предназначенные для такого применения.

    Перейдём к анализу построения простейшего варианта цифрового счётчика на наиболее дешёвом (менее доллара) 8-разрядном микроконтроллере Motorola. В представленном решении реализованы все минимально необходимые функции. Оно базируется на использовании недорогой ИС преобразователя мощности в частоту импульсов КР1095ПП1 и 8-разрядного микроконтроллера MC68HC05KJ1 (рис. 3). При такой структуре микроконтроллеру требуется суммировать число импульсов, выводить информацию на дисплей и осуществлять её защиту в различных аварийных режимах. Рассматриваемый счётчик фактически представляет собой цифровой функциональный аналог существующих механических счётчиков, приспособленный к дальнейшему усовершенствованию.

Основные узлы простейшего цифрового счетчика электроэнергии

Рис. 3. Основные узлы простейшего цифрового счетчика электроэнергии

    Сигналы, пропорциональные напряжению и току в сети, снимаются с датчиков и поступают на вход преобразователя. ИС преобразователя перемножает входные сигналы, получая мгновенную потребляемую мощность. Этот сигнал поступает на вход микроконтроллера, преобразующего его в Вт·ч и, по мере накопления сигналов, изменяющего показания счётчика. Частые сбои напряжения питания приводят к необходимости использования EEPROM для сохранения показаний счётчика. Поскольку сбои по питанию являются наиболее характерной аварийной ситуацией, такая защита необходима в любом цифровом счётчике.

    Алгоритм работы программы (рис. 4) для простейшего варианта такого счётчика довольно прост. При включении питания микроконтроллер конфигурируется в соответствии с программой, считывает из EEPROM последнее сохранённое значение и выводит его на дисплей. Затем контроллер переходит в режим подсчёта импульсов, поступающих от ИС преобразователя, и, по мере накопления каждого Вт·ч, увеличивает показания счётчика.

Алгоритм работы программы

Рис. 4. Алгоритм работы программы

    При записи в EEPROM значение накопленной энергии может быть утеряно в момент отключения напряжения. По этим причинам значение накопленной энергии записывается в EEPROM циклически друг за другом через определённое число изменений показаний счётчика, заданное программно, в зависимости от требуемой точности. Это позволяет избежать потери данных о накопленной энергии. При появлении напряжения микроконтроллер анализирует все значения в EEPROM и выбирает последнее. Для минимальных потерь достаточно записывать значения с шагом 100 Вт·ч. Эту величину можно менять в программе.

    Схема цифрового вычислителя показана на рис. 5. К разъёму X1 подключается напряжение питания 220 В и нагрузка. С датчиков тока и напряжения сигналы поступают на микросхему преобразователя КР1095ПП1 с оптронной развязкой частотного выхода. Основу счётчика составляет микроконтроллер MC68HC05KJ1 фирмы Motorola, выпускаемый в 16-выводном корпусе (DIP или SOIC) и имеющий 1,2 Кбайт ПЗУ и 64 байт ОЗУ. Для хранения накопленного количества энергии при сбоях по питанию используется EEPROM малого объёма 24C00 (16 байт) фирмы Microchip. В качестве дисплея используется 8-разрядный 7-сегментный ЖКИ, управляемый любым недорогим контроллером, обменивающийся с центральным микроконтроллером по протоколу SPI или I2C и подключаемый к разъёму Х2.

    Реализация алгоритма потребовала менее 1 Кбайт памяти и менее половины портов ввода/вывода микроконтроллера MC68HC05KJ1. Его возможностей достаточно, чтобы добавить некоторые сервисные функции, например, объединение счётчиков в сеть по интерфейсу RS-485. Эта функция позволит получать информацию о накопленной энергии в сервисном центре и отключать электричество в случае отсутствия оплаты. Сетью из таких счётчиков можно оборудовать жилой многоэтажный дом. Все показания по сети будут поступать в диспетчерский центр.

    Определённый интерес представляет собой семейство 8-разрядных микроконтроллеров с расположенной на кристалле FLASH-памятью. Поскольку его можно программировать непосредственно на собранной плате, обеспечивается защищённость программного кода и возможность обновления ПО без монтажных работ.

Цифровой вычислитель для цифрового счетчика электроэнергии

Рис. 5. Цифровой вычислитель для цифрового счетчика электроэнергии

    Ещё более интересен вариант счётчика электроэнергии без внешней EEPROM и дорогостоящей внешней энергонезависимой ОЗУ. В нём можно при аварийных ситуациях фиксировать показания и служебную информацию во внутреннюю FLASH-память микроконтроллера. Это к тому же обеспечивает конфиденциальность информации, чего нельзя сделать при использовании внешнего кристалла, не защищённого от несанкционированного доступа. Такие счётчики электроэнергии любой сложности можно реализовать с помощью микроконтроллеров фирмы Motorola семейства HC08 с FLASH-памятью, расположенной на кристалле.

    Переход на цифровые автоматические системы учёта и контроля электроэнергии — вопрос времени. Преимущества таких систем очевидны. Цена их будет постоянно падать. И даже на простейшем микроконтроллере такой цифровой счётчик электроэнергии имеет очевидные преимущества: надёжность за счёт полного отсутствия трущихся элементов; компактность; возможность изготовления корпуса с учётом интерьера современных жилых домов; увеличение периода поверок в несколько раз; ремонтопригодность и простота в обслуживании и эсплуатации. При небольших дополнительных аппаратных и программных затратах даже простейший цифровой счётчик может обладать рядом сервисных функций, отсутствующих у всех механических, например, реализация многотарифной оплаты за потребляемую энергию, возможность автоматизированного учёта и контроля потребляемой электроэнергии.

|| Главная || О компании || Прайс || Контакты || Полезные советы || Статьи || Справочники и книги || Схемы || Написать письмо с сайта ||
  Канал на YOUTUBE
   
Звонки
01 Сетевые  многомелодийные с живым звуком
02 Сетевые 2-х проводные многомелодийные
03 Сетевые 2-х проводные электронные с одной мелодией
04 Сетевые 2-х проводные эл.механические с одной мелодией и ELIT серия
05 Беспроводные батареечные
06 Беспроводные сетевые

07 Проводные батареечные


Разное
08 Кнопки и другое
Приборы защиты от перепадов напряжения в электросети (барьеры)
 - 09-01 Розеточные
 - 09-50 DIN-реечные
11 Указатели напряжения, мультиметры, искатели скрытои проводки
12 Электро-установочные изделия
13 Кнопки, выключатели, тумблеры, компоненты коммутации
14 Датчики движения, таймеры, фотореле
15 Терморегуляторы
16 Разное
17 Продукция Digi Cop (Харьков)
18 Барьеры RedLine (Харьков)
20 НОВИНКИ
21 Тёплый пол

Мы в Google+
Мы в Youtube

Рейтинг@mail.ru Яндекс.Метрика

Legenda
E-mail:
Рейтинг сайтов Дизайн сайта